Zfhx4 regulates endochondral ossification as the transcriptional platform of Osterix in mice

Zfhx4 作为小鼠 Osterix 的转录平台调节软骨内骨化

阅读:10
作者:Eriko Nakamura, Kenji Hata, Yoshifumi Takahata, Hiroshi Kurosaka, Makoto Abe, Takaya Abe, Miho Kihara, Toshihisa Komori, Sachi Kobayashi, Tomohiko Murakami, Toshihiro Inubushi, Takashi Yamashiro, Shiori Yamamoto, Haruhiko Akiyama, Makoto Kawaguchi, Nobuo Sakata, Riko Nishimura

Abstract

Endochondral ossification is regulated by transcription factors that include SRY-box transcription factor 9, runt-related protein 2 (Runx2), and Osterix. However, the sequential and harmonious regulation of the multiple steps of endochondral ossification is unclear. This study identified zinc finger homeodomain 4 (Zfhx4) as a crucial transcriptional partner of Osterix. We found that Zfhx4 was highly expressed in cartilage and that Zfhx4 deficient mice had reduced expression of matrix metallopeptidase 13 and inhibited calcification of cartilage matrices. These phenotypes were very similar to impaired chondrogenesis in Osterix deficient mice. Coimmunoprecipitation and immunofluorescence indicated a physical interaction between Zfhx4 and Osterix. Notably, Zfhx4 and Osterix double mutant mice showed more severe phenotype than Zfhx4 deficient mice. Additionally, Zfhx4 interacted with Runx2 that functions upstream of Osterix. Our findings suggest that Zfhx4 coordinates the transcriptional network of Osterix and, consequently, endochondral ossification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。