A catechol bioadhesive for rapid hemostasis and healing of traumatic internal organs and major arteries

一种用于快速止血和愈合创伤性内脏器官和主要动脉的儿茶酚生物粘合剂

阅读:5
作者:Guoqing Wang, Xinyue Meng, Peiyan Wang, Xinping Wang, Gaoli Liu, Dong-An Wang, Changjiang Fan

Abstract

Uncontrolled hemorrhage caused by trauma to internal organs or major arteries poses critical threats to lives. However, rapid hemostasis followed by tissue repair remains an intractable challenge in surgery owing to the lack of ideal internal-use adhesives that can achieve fast and robust wet adhesion and accelerate wound healing. Herein, we develop a robust hemostatic bioadhesive (CAGA) from novel highly-branched aminoethyl gelatin with end-grafted abundant catechol (Gel-AE-Ca). The unique chemical structure of Gel-AE-Ca makes CAGA capable of gelling on wet tissues via synergetic cross-linking of catechol-Fe3+ chelation and horseradish peroxidase (HRP)/H2O2-triggered covalent bonds using a dual-channel needle, meeting the key demands of internal medical applications (e.g., instant and strong wet adhesion, injectability, biocompatibility, self-healing, stretching flexibility, infection resistance, and proper biodegradability). It exhibits rapid gelation within 10 s and robust wet tissue adhesion up to 115.0 ± 13.1 kPa of shear strength and 245.0 ± 33.8 mm Hg of sealing strength. In vivo trials demonstrate that CAGA can not only effectively seal anastomosis of the carotid artery, but achieve rapid hemostasis on the sites of liver incisions and penetrating cardiac wounds within 10 s. The wound closure by CAGA and its timely biodegradation promote wound healing of the vital organs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。