Accelerated Formation of Oxide Layers on Zircaloy-4 Utilizing Air Oxidation and Comparison with Water-Corroded Oxide Layers

利用空气氧化加速锆-4 氧化层的形成以及与水腐蚀氧化层的比较

阅读:5
作者:Shanmugam Mannan Muthu, Hyeon-Bae Lee, Bright O Okonkwo, Dong Wang, Changheui Jang, Taehyung Na

Abstract

For the dry storage of Canada Deuterium Uranium (CANDU) spent nuclear fuels, the integrity of Zircaloy-4 fuel cladding has to be verified. However, the formation of ~10 µm-thick oxide layers in typical CANDU reactor operating conditions takes several years, which makes sample preparation a slow process. To overcome such limitations, in this study, an accelerated formation of an oxide layer on Zircaloy-4 cladding tube was developed with a combination of high-temperature water corrosion (HT-WC) and air oxidation (AO). First, Zircaloy-4 tubes were corroded in oxygenated (2 ppm dissolved oxygen) high-temperature water (360 °C/19.5 MPa) for 500 h. Then, the tubes were air-oxidized at 500 °C for 30 h. Finally, the tubes were corroded again in HT-WC for 500 h to produce ~10 µm-thick oxide layers. The morphology and characteristics of the oxide layer in each step were analyzed using X-ray diffraction, scanning and transmission electron microscopy. The results showed that the oxide layer formed in the accelerated method was comparable to that formed in HT-WC in terms of morphology and oxide phases. Thus, the accelerated oxide formation method can be used to prepare an oxidized Zircaloy-4 cladding tube for CANDU fuel integrity analysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。