Spindle and kinetochore-associated complex subunit 3 (SKA3) promotes stem cell-like properties of hepatocellular carcinoma cells through activating Notch signaling pathway

纺锤体和着丝粒相关复合体亚基3(SKA3)通过激活Notch信号通路促进肝癌细胞获得干细胞样特性

阅读:4
作者:Shuya Bai, Wei Chen, Mengli Zheng, Xiju Wang, Wang Peng, Yuchong Zhao, Yun Wang, Si Xiong, Bin Cheng

Background

Cancer stemness contributes to hepatocellular carcinoma (HCC) initiation, metastasis, drug resistance, and recurrence. The spindle and kinetochore-associated (SKA) complex has been shown to be involved in tumor progression; however, its effects on cancer stem cell-like properties have not yet been examined. This research sought to study each subunit of the SKA complex in HCC systematically.

Conclusions

SKA3 promotes HCC stem cell-like properties via the Notch signaling pathway. As SKA3 appears to act as a regulator of stemness in HCC, it might be a potential molecular target for HCC.

Methods

Bioinformatic analyses were carried out to examine the expression and clinical data of the SKA complex's each subunit in HCC. The expression of the target genes was detected by quantitative reverse transcription-polymerase chain reaction and Western blot assays. Clone formation and Transwell assays were performed to assess the proliferation and migration abilities of the SKA complex's each subunit. Sphere formation assays and subcutaneous xenograft experiments were performed to investigate the effects of SKA complex subunit 3 (SKA3) on the self-renewal and tumorigenic abilities of HCC.

Results

Each subunit of the SKA complex was highly expressed in HCC, but only SKA complex subunit 1 (SKA1) and SKA3 were associated with the poor overall survival of HCC patients. Additionally, the HCC cells overexpressing SKA3 exhibited increased migration, invasion, proliferation, self-renewal, Sorafenib resistance and tumorigenic abilities. Notch signaling played a vital role in the process by which SKA3 promoted HCC stemness. Conclusions: SKA3 promotes HCC stem cell-like properties via the Notch signaling pathway. As SKA3 appears to act as a regulator of stemness in HCC, it might be a potential molecular target for HCC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。