Suppression of miR-16 promotes tumor growth and metastasis through reversely regulating YAP1 in human cholangiocarcinoma

抑制 miR-16 通过反向调控 YAP1 促进人胆管癌中的肿瘤生长和转移

阅读:8
作者:Sheng Han #, Dong Wang #, Guohua Tang #, Xinxiang Yang, Chenyu Jiao, Renjie Yang, Yaodong Zhang, Liqun Huo, Zicheng Shao, Zefa Lu, Jiawei Zhang, Xiangcheng Li

Aims

Aberrant expression of microRNAs is associated with many cancers progression. Many studies have shown that miR-16 is down-regulated in many cancers. However, its role in cholangiocarcinoma (CCA) is unknown.

Background & aims

Aberrant expression of microRNAs is associated with many cancers progression. Many studies have shown that miR-16 is down-regulated in many cancers. However, its role in cholangiocarcinoma (CCA) is unknown.

Conclusions

miR-16, as a novel tumor suppressor in CCA through directly targeting YAP1, might be a promising therapeutic target or prognosis biomarker for CCA.

Methods

Quantitative real-time PCR (qRT-PCR) was developed to measure miR-16 expression in CCA tissues and cell lines. CCK-8, colony formation and transwell assays were used to reveal the role of miR-16 in CCA cell proliferation and malignant transformation in vitro. The loss-and-gain function was further validated by subcutaneous xenotransplantation and tail vein injection xenotransplantation model in vivo. Dual-luciferase reporter assay was performed to validate the relationship of miR-16 with YAP1.

Results

MiR-16 was notably downregulated in CCA tissues, which was associated with tumor size, metastasis, and TNM stage. Both in vitro and in vivo studies demonstrated that miR-16 could suppress proliferation, invasion and metastasis throughout the progression of CCA. We further identified YAP1 as a direct target gene of miR-16 and found that miR-16 could regulate CCA cell growth and invasion in a YAP1-dependent manner. In addition, YAP1 was markedly upregulated in CCA tissues, which was reversely correlated with miR-16 level in tissue samples. Besides, Down-regulation of miR-16 was remarkably associated with tumor progression and poor survival in CCA patients through a Kaplan-Meier survival analysis. Conclusions: miR-16, as a novel tumor suppressor in CCA through directly targeting YAP1, might be a promising therapeutic target or prognosis biomarker for CCA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。