The Synthesis, In Vitro Bio-Evaluation, and In Silico Molecular Docking Studies of Pyrazoline-Thiazole Hybrid Analogues as Promising Anti-α-Glucosidase and Anti-Urease Agents

吡唑啉-噻唑杂化类似物作为有前途的抗α-葡萄糖苷酶和抗脲酶剂的合成、体外生物评价和计算机分子对接研究

阅读:5
作者:Yousaf Khan, Shoaib Khan, Rafaqat Hussain, Aneela Maalik, Wajid Rehman, Mohamed W Attwa, Rafia Masood, Hany W Darwish, Hazem A Ghabbour

Abstract

In the present work, a concise library of benzothiazole-derived pyrazoline-based thiazole (1-17) was designed and synthesized by employing a multistep reaction strategy. The newly synthesized compounds were screened for their α-glucosidase and urease inhibitory activities. The scaffolds (1-17) were characterized using a combination of several spectroscopic techniques, including FT-IR, 1H-NMR, 13C-NMR, and EI-MS. The majority of the synthesized compounds demonstrated a notable potency against α-glucosidase and urease enzymes. These analogues disclosed varying degrees of α-glucosidase and urease inhibitory activities, with their IC50 values ranging from 2.50 to 17.50 μM (α-glucosidase) and 14.30 to 41.50 (urease). Compounds 6, 7, 14, and 12, with IC50 values of 2.50, 3.20, 3.40, and 3.50 μM as compared to standard acarbose (IC50 = 5.30 µM), while the same compounds showed 14.30, 19.20, 21.80, and 22.30 comparable with thiourea (IC50 = 31.40 μM), respectively, showed excellent inhibitory activity. The structure-activity relationship revealed that the size and electron-donating or electron-withdrawing effects of substituents influenced the enzymatic activities such as α-glucosidase and urease. Compound 6 was a dual potent inhibitor against α-glucosidase and urease due to the presence of -CF3 electron-withdrawing functionality on the phenyl ring. To the best of our knowledge, these synthetic compounds were found to be the most potent dual inhibitors of α-glucosidase and urease with minimum IC50 values. Moreover, in silico studies on most active compounds, i.e., 6, 7, 14, and 12, were also performed to understand the binding interaction of most active compounds with active sites of α-glucosidase and urease enzymes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。