Bariatric Surgery in Rats Upregulates FSP27 Expression in Fat Tissue to Affect Fat Hydrolysis and Metabolism

大鼠减肥手术上调脂肪组织中 FSP27 的表达,从而影响脂肪水解和代谢

阅读:6
作者:Jingyao Hu, Mofei Wang, Yong Zhou, Xiaowei Zhang, Bing He, Lei Liu, Rui Ma, Tianyi Zhang, Keyi Liu, Yong Wang, Jingang Liu

Conclusion

FSP27 is associated with rat lipid metabolism and its expression varies with energy and nutrient supply. It can inhibit excessive hydrolysis and fat accumulation by regulating HSL and ATGL expression and by mediating LDs formation.

Purpose

To explore the changes in FSP27 expression and fat metabolism in adipose tissue and their relationship after bariatric surgery in rats. Method: Food intake, body weight, triglyceride content, fat distribution, and fat cell morphology were evaluated in rats grouped into control, sham, sleeve gastrectomy (SG), and Roux-en-Y gastric bypass (RYGB) groups. Immunohistochemistry and western blotting were used to detect protein expression and real-time PCR was used to detect mRNA expression. Mouse 3T3-L1 preadipocytes were used to assess the effects of different energy levels and nutrient factors on FSP27 in adipocytes. Result: Food intake, body weight, and triglyceride levels were reduced in RYGB and SG rats within 28 days after surgery, with a more pronounced effect in the RYGB group. Weight loss was mainly due to loss of fat mass rather than loss of lean mass, with the most pronounced decrease in trunk fat. FSP27 expression increased in lean rat adipocytes accompanied by increased lipid droplets (LDs). In SG and RYGB rats, the FSP27 protein concentration gradually increased in white adipose tissue (WAT) after operation. Hormone-sensitive lipase (HSL), p-HSL/HSL, Adipose Triglyceride Lipase (ATGL), and Comparative Gene Identification-58 (CGI-58) gradually decreased in SG and RYGB rats, but they were always higher than in control and sham animals. FSP27 was also decreased in 3T3-L1 adipocytes of animals with a high-energy diet.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。