Coactivation of M(1) muscarinic and alpha1 adrenergic receptors stimulates extracellular signal-regulated protein kinase and induces long-term depression at CA3-CA1 synapses in rat hippocampus

M(1) 毒蕈碱受体和 α1 肾上腺素能受体的共同激活可刺激细胞外信号调节蛋白激酶并诱导大鼠海马 CA3-CA1 突触的长期抑制

阅读:8
作者:Cary L Scheiderer, Caroline C Smith, Eve McCutchen, Portia A McCoy, Erin E Thacker, Krystyna Kolasa, Lynn E Dobrunz, Lori L McMahon

Abstract

Intact cholinergic innervation from the medial septum and noradrenergic innervation from the locus ceruleus are required for hippocampal-dependent learning and memory. However, much remains unclear about the precise roles of acetylcholine (ACh) and norepinephrine (NE) in hippocampal function, particularly in terms of how interactions between these two transmitter systems might play an important role in synaptic plasticity. Previously, we reported that activation of either muscarinic M(1) or adrenergic alpha1 receptors induces activity- and NMDA receptor-dependent long-term depression (LTD) at CA3-CA1 synapses in acute hippocampal slices, referred to as muscarinic LTD (mLTD) and norepinephrine LTD (NE LTD), respectively. In this study, we tested the hypothesis that mLTD and NE LTD are independent forms of LTD, yet require activation of a common Galphaq-coupled signaling pathway for their induction, and investigated the net effect of coactivation of M(1) and alpha1 receptors on the magnitude of LTD induced. We find that neither mLTD nor NE LTD requires phospholipase C activation, but both plasticities are prevented by inhibiting the Src kinase family and extracellular signal-regulated protein kinase (ERK) activation. Interestingly, LTD can be induced when M(1) and alpha1 agonists are coapplied at concentrations too low to induce LTD when applied separately, via a summed increase in ERK activation. Thus, because ACh and NE levels in vivo covary, especially during periods of memory encoding and consolidation, cooperative signaling through M(1) and alpha1 receptors could function to induce long-term changes in synaptic function important for cognition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。