The inhibition of high-voltage-activated calcium current by activation of MrgC11 involves phospholipase C-dependent mechanisms

MrgC11 激活对高压激活钙电流的抑制涉及磷脂酶 C 依赖性机制

阅读:9
作者:Z Li, S-Q He, P-Y Tseng, Q Xu, V Tiwari, F Yang, B Shu, T Zhang, Z Tang, S N Raja, Y Wang, X Dong, Y Guan

Abstract

High-voltage-activated (HVA) calcium channels play an important role in synaptic transmission. Activation of Mas-related G-protein-coupled receptor subtype C (MrgC; mouse MrgC11, rat homolog rMrgC) inhibits HVA calcium current (ICa) in small-diameter dorsal root ganglion (DRG) neurons, but the intracellular signaling cascade underlying MrgC agonist-induced inhibition of HVA ICa in native DRG neurons remains unclear. To address this question, we conducted patch-clamp recordings in MrgA3-eGFP-wild-type mice, in which most MrgA3-eGFP(+) DRG neurons co-express MrgC11 and can be identified for recording. We found that the inhibition of HVA ICa by JHU58 (0.001-100nM, a dipeptide, MrgC-selective agonist) was significantly reduced by pretreatment with a phospholipase C (PLC) inhibitor (U73122, 1μM), but not by its inactive analog (U73343) or vehicle. Further, in rats that had undergone spinal nerve injury, pretreatment with intrathecal U73122 nearly abolished the inhibition of mechanical hypersensitivity by intrathecal JHU58. The inhibition of HVA ICa in MrgA3-eGFP(+) neurons by JHU58 (100nM) was partially reduced by pretreatment with a Gβγ blocker (gallein, 100μM). However, applying a depolarizing prepulse and blocking the Gαi and Gαs pathways with pertussis toxin (PTX) (0.5μg/mL) and cholera toxin (CTX) (0.5μg/mL), respectively, had no effect. These findings suggest that activation of MrgC11 may inhibit HVA ICa in mouse DRG neurons through a voltage-independent mechanism that involves activation of the PLC, but not Gαi or Gαs, pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。