CHL1 hypermethylation as a potential biomarker of poor prognosis in breast cancer

CHL1 高甲基化是乳腺癌预后不良的潜在生物标志物

阅读:4
作者:Esperanza Martín-Sánchez, Saioa Mendaza, Ane Ulazia-Garmendia, Iñaki Monreal-Santesteban, Idoia Blanco-Luquin, Alicia Córdoba, Francisco Vicente-García, Noemí Pérez-Janices, David Escors, Diego Megías, Paula López-Serra, Manel Esteller, José Juan Illarramendi, David Guerrero-Setas

Abstract

The CHL1 gene encodes a cell-adhesion molecule proposed as being a putative tumour-suppressor gene in breast cancer (BC). However, neither the underlying molecular mechanisms nor the clinical value of CHL1 downregulation in BC has been explored. The methylation status of three CpG sites in the CHL1 promoter was analysed by pyrosequencing in neoplastic biopsies from 142 patients with invasive BC and compared with that of non-neoplastic tissues. We found higher CHL1 methylation levels in breast tumours than in non-neoplastic tissues, either from mammoplasties or adjacent-to-tumour, which correlated with lower levels of protein expression in tumours measured by immunohistochemistry. A panel of five BC cell lines was treated with two epigenetic drugs, and restoration of CHL1 expression was observed, indicating in vitro dynamic epigenetic regulation. CHL1 was silenced by shRNA in immortalized but non-neoplastic mammary cells, and enhanced cell proliferation and migration, but not invasion, were found by real-time cell analysis. The prognostic value of CHL1 hypermethylation was assessed by the log-rank test and fitted in a Cox regression model. Importantly, CHL1 hypermethylation was very significantly associated with shorter progression-free survival in our BC patient series, independent of age and stage (p = 0.001). In conclusion, our results indicate that CHL1 is downregulated by hypermethylation and that this epigenetic alteration is an independent prognostic factor in BC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。