A New Therapeutic Strategy Targeting Protein Deacetylation for Spinal Cord Injury

针对蛋白质去乙酰化治疗脊髓损伤的新治疗策略

阅读:5
作者:Xinwei Liu, Bin Ma, Haocong Zhang, Ruonan Chai, Liangbi Xiang

Abstract

Lysine acetylation is a post-translational modification that regulates a diversity of biological processes. However, its implication in spinal cord injury (SCI) remains unclear. Here we investigated the acetylation events in injured spinal cords on a proteomic scale for the first time. Additionally, whether promoting acetylation could mitigate SCI was evaluated. A total of 268 differentially acetylated peptides were identified. Among them, 2 peptides were up-acetylated and 141 peptides were down-acetylated in the injured spinal cord tissues (Fold change >2 and P < 0.05). There were also 116 unique acetylated peptides in the sham group and 9 unique acetylated peptides in the SCI group. Functional enrichment analysis revealed that differently acetylated proteins were involved in multiple cellular processes and metabolic processes. Kyoto Encyclopaedia of Genes and Genomes analysis showed that several pathways, including cGMP-PKG signaling pathway and hypoxia-inducible factor-1 (HIF-1) signaling pathway, were predominantly presented. Moreover, promoting acetylation using glycerol triacetate (GTA) showed a therapeutic effect on SCI, with improved Basso-Beattie-Bresnahan scores and histologic morphology, and decreased neuronal apoptosis and inflammation. In conclusion, our data indicated that protein deacetylation might play crucial roles in the development of secondary injury of SCI, and promoting acetylation by GTA effectively mitigated SCI. Our data not only enhance our understanding on acetylproteome dataset in the spinal cord tissues, but also provide novel insights for the treatment of SCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。