A role for myosin Va in cerebellar plasticity and motor learning: a possible mechanism underlying neurological disorder in myosin Va disease

肌球蛋白 Va 在小脑可塑性和运动学习中的作用:肌球蛋白 Va 疾病导致神经系统疾病的可能机制

阅读:10
作者:Mariko Miyata, Yasushi Kishimoto, Masahiko Tanaka, Kouichi Hashimoto, Naohide Hirashima, Yoshiharu Murata, Masanobu Kano, Yoshiko Takagishi

Abstract

Mutations of the myosin Va gene cause the neurological diseases Griscelli syndrome type 1 and Elejalde syndrome in humans and dilute phenotypes in rodents. To understand the pathophysiological mechanisms underlying the neurological disorders in myosin Va diseases, we conducted an integrated analysis at the molecular, cellular, electrophysiological, and behavioral levels using the dilute-neurological (d-n) mouse mutant. These mice manifest an ataxic gait and clonic seizures during postnatal development, but the neurological disorders are ameliorated in adulthood. We found that smooth endoplasmic reticulum (SER) rarely extended into the dendritic spines of Purkinje cells (PCs) of young d-n mice, and there were few, if any, IP(3) receptors. Moreover, long-term depression (LTD) at parallel fiber-PC synapses was abolished, consistent with our previous observations in juvenile lethal dilute mutants. Young d-n mice exhibited severe impairment of cerebellum-dependent motor learning. In contrast, adult d-n mice showed restoration of motor learning and LTD, and these neurological changes were associated with accumulation of SER and IP(3) receptors in some PC spines and the expression of myosin Va proteins in the PCs. RNA interference-mediated repression of myosin Va caused a reduction in the number of IP(3) receptor-positive spines in cultured PCs. These findings indicate that myosin Va function is critical for subsequent processes in localization of SER and IP(3) receptors in PC spines, LTD, and motor learning. Interestingly, d-n mice had defects of motor coordination from young to adult ages, suggesting that the role of myosin Va in PC spines is not sufficient for motor coordination.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。