Divalent cations regulate the folding and activation status of integrins during their intracellular trafficking

二价阳离子在细胞内运输过程中调节整合素的折叠和活化状态

阅读:4
作者:Shweta Tiwari, Janet A Askari, Martin J Humphries, Neil J Bulleid

Abstract

Integrins are divalent cation-dependent, αβ heterodimeric adhesion receptors that control many fundamental aspects of cell behaviour by bi-directional signalling between the extracellular matrix and intracellular cytoskeleton. The activation state of cell surface integrins is tightly regulated by divalent cation occupancy of the ligand-binding pocket and by interaction with cytoplasmic adaptor proteins, such as talin. These agents elicit gross conformational changes across the entire molecule, which specify the activation state. Much less is known about the activation state of newly synthesised integrins or the role of cations during the early folding and trafficking of integrins. Here we use a number of well-characterised, conformation-specific antibodies to demonstrate that β1-integrins adopt the bent, inactive conformation after assembly with α-integrins in the endoplasmic reticulum. Folding and assembly are totally dependent on the binding of Ca(2+) ions. In addition, Ca(2+) binding prevents integrin activation before its arrival at the cell surface. Activation at the cell surface occurs only following displacement of Ca(2+) with Mg(2+) or Mn(2+). These results demonstrate the essential roles played by divalent cations to facilitate folding of the β-integrin subunit, to prevent inappropriate intracellular integrin signalling, and to activate ligand binding and signalling at the cell surface.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。