Ketamine induces hippocampal apoptosis through a mechanism associated with the caspase-1 dependent pyroptosis

氯胺酮通过与 caspase-1 依赖性细胞焦亡相关的机制诱导海马细胞凋亡

阅读:5
作者:Zhi Ye, Qing Li, Qulian Guo, Yunchuan Xiong, Dong Guo, Hong Yang, Yan Shu

Abstract

Ketamine, a pediatric anesthetic, is widely used in clinical practice. There was growing evidence showing that ketamine can promote neuronal death in developing brains of both humans and animals. In this study, we used in vivo neonatal and juvenile mouse models to induce ketamine-related neurotoxicity in the hippocampus. Active caspase-3 and -9 proteins, which are responsible for the release of cytochrome C, and the mitochondrial translocation of p53, which is associated with mitochondrial apoptosis, were found to be significantly up-regulated in the ketamine-induced hippocampal neurotoxicity. Furthermore, we demonstrated that the levels of pyroptosis-related proteins, including caspase-1 and -11, NOD-like receptor family, pyrin domain containing 3 (NLRP3), and IL-1β and IL-18, significantly increased after multiple doses of ketamine administration. We speculated that ketamine triggered the formation of NLRP3 and caspase-1 complex and its translocation to the mitochondria. In consistent with this, ketamine treatment was found to induce pyroptosis in mouse primary hippocampal neurons, which was characterized by increased pore formation and elevated lactate dehydrogenase release in mitochondria. Silencing caspase-1 with lentivirus-mediated short hairpin RNA (shRNA) significantly decreased the levels of not only pyroptosis-related proteins but also mitochondrial apoptosis-associated proteins in mouse primary hippocampal neurons. We conclude that caspase-1-dependent pyroptosis is an important event which may be an essential pathway involved in the mitochondria-associated apoptosis in ketamine-induced hippocampal neurotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。