Genetic correction of induced pluripotent stem cells from a DFNA36 patient results in morphologic and functional recovery of derived hair cell-like cells

对 DFNA36 患者的诱导性多能干细胞进行基因校正,可使衍生的毛细胞样细胞的形态和功能恢复

阅读:5
作者:Yi Luo, Kaiwen Wu, Xiaolong Zhang, Hongyang Wang, Qiuju Wang

Background

TMC1 is one of the most common deafness genes causing DFNA36. Patient-derived human induced pluripotent stem cells (iPSCs) provide an opportunity to modelling diseases. TMC1 p.M418K mutation in human is orthologous to Beethoven mice. Here, we investigated the differentiation, morphology and electrophysiological properties of hair cell-like cells (HC-like cells) derived from DFNA36 patient.

Conclusions

Our results indicate that TMC1 p.M418K mutation didn't influence inner ear hair cell differentiation but the morphology of microvilli and electrophysiological properties and gene correction induced recovery. CRISPR/Cas9 gene therapy is feasible in human patient with TMC1 p.M418K mutation.

Methods

Inner ear HC-like cells were induced from iPSCs derived from DFNA36 (TMC1 p.M418K) patient (M+/-), normal control (M+/+) and genetic corrected iPSCs (M+/C). Immunofluorescence, scanning electron microscopy and whole-cell patch-clamp were used to study the mechanism and influence of TMC1 p.M418K mutation.

Results

In this study we successfully generated HC-like cells from iPSCs with three different genotypes. HC-like cells from M+/- showed defected morphology of microvilli and physiological properties compared to M+/+. HC-like cells from M+/C showed recovery in morphology of microvilli and physiological properties. Conclusions: Our results indicate that TMC1 p.M418K mutation didn't influence inner ear hair cell differentiation but the morphology of microvilli and electrophysiological properties and gene correction induced recovery. CRISPR/Cas9 gene therapy is feasible in human patient with TMC1 p.M418K mutation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。