Prodigiosins from a marine sponge-associated actinomycete attenuate HCl/ethanol-induced gastric lesion via antioxidant and anti-inflammatory mechanisms

海洋海绵相关放线菌中的灵菌红素通过抗氧化和抗炎机制减轻 HCl/乙醇引起的胃损伤

阅读:9
作者:Mohamed S Abdelfattah, Mohammed I Y Elmallah, Hassan Y Ebrahim, Rafa S Almeer, Rasha M A Eltanany, Ahmed E Abdel Moneim

Abstract

Gastric ulcer is sores that form in the stomach mucosal layer because of erosion caused by high acid secretion and excessive use of non-steroidal anti-inflammatory drugs. Prodigiosins (PdGs) are red-pigmented secondary metabolites produced by bacteria, including actinomycetes. Butylcycloheptylprodigiosin (1) and undecylprodigiosin (2) were identified and isolated from a crude extract of the actinomycete RA2 isolated from the Red Sea Sponge Spheciospongia mastoidea. Chemical structure of 1 and 2 was determined by NMR and mass spectroscopy. Although their antioxidant and anti-inflammatory properties are known, their effect on gastric lesion is unknown. Therefore, this study aimed to investigate gastroprotective effects of PdGs against HCl/ethanol-induced gastric lesion in rats. Oral pretreatment with PdGs (100, 200, and 300 mg/kg) attenuated severity of HCl/ethanol-induced gastric mucosal injury, as evidenced by decreases in gastric lesion index scores, ulceration area, histopathologic abnormality, and neutrophil infiltration. These effects were comparable to those of omeprazole, a standard anti-gastric ulcer agent. HCl/ethanol-induced gastric erosions was associated with tremendous increases in lipid peroxidation, nitric oxide, and pro-inflammatory cytokines and mediators (myeloperoxidase, interleukin-1β, tumor necrosis factor-α, and cyclooxygenase-2), and with significant decreases in enzymatic and non-enzymatic antioxidant activities. However, PdGs ameliorated gastric inflammation and oxidative stress by downregulating nuclear factor kappa B and inducible nitric oxide synthase expression and upregulating heme oxygenase-1 expression. PdGs prevented gastric mucosal apoptosis by downregulating Bax and caspase-3 expression and upregulating Bcl-2 expression, thereby increasing prostaglandin E2 production. Our results suggested that PdGs exerted gastroprotective effects by decreasing the levels of inflammatory mediators, apoptotic markers, and antioxidants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。