A connection between reversible tyrosine phosphorylation and SNARE complex disassembly activity of N-ethylmaleimide-sensitive factor unveiled by the phosphomimetic mutant N-ethylmaleimide-sensitive factor-Y83E

磷酸化模拟突变体 N-乙基马来酰亚胺敏感因子-Y83E 揭示可逆酪氨酸磷酸化与 N-乙基马来酰亚胺敏感因子 SNARE 复合物分解活性之间的联系

阅读:8
作者:María Celeste Ruete, Valeria Eugenia Paola Zarelli, Diego Masone, Matilde de Paola, Diego Martín Bustos, Claudia Nora Tomes

Abstract

N-ethylmaleimide-sensitive factor (NSF) disassembles fusion-incompetent cis soluble-NSF attachment protein receptor (SNARE) complexes making monomeric SNAREs available for subsequent trans pairing and fusion. In most cells the activity of NSF is constitutive, but in Jurkat cells and sperm it is repressed by tyrosine phosphorylation; the phosphomimetic mutant NSF-Y83E inhibits secretion in the former. The questions addressed here are if and how the NSF mutant influences the configuration of the SNARE complex. Our model is human sperm, where the initiation of exocytosis (acrosome reaction (AR)) de-represses the activity of NSF through protein tyrosine phosphatase 1B (PTP1B)-mediated dephosphorylation. We developed a fluorescence microscopy-based method to show that capacitation increased, and challenging with an AR inducer decreased, the number of cells with tyrosine-phosphorylated PTP1B substrates in the acrosomal domain. Results from bioinformatic and biochemical approaches using purified recombinant proteins revealed that NSF-Y83E bound PTP1B and thereupon inhibited its catalytic activity. Mutant NSF introduced into streptolysin O-permeabilized sperm impaired cis SNARE complex disassembly, blocking the AR; subsequent addition of PTP1B rescued exocytosis. We propose that NSF-Y83E prevents endogenous PTP1B from dephosphorylating sperm NSF, thus maintaining NSF's activity in a repressed mode and the SNARE complex unable to dissociate. The contribution of this paper to the sperm biology field is the detection of PTP1B substrates, one of them likely being NSF, whose tyrosine phosphorylation status varies during capacitation and the AR. The contribution of this paper to the membrane traffic field is to have generated direct evidence that explains the dominant-negative role of the phosphomimetic mutant NSF-Y83E.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。