Uncoupling p53 functions in radiation-induced intestinal damage via PUMA and p21

通过 PUMA 和 p21 解耦 p53 在放射性肠道损伤中的作用

阅读:8
作者:Brian J Leibowitz, Wei Qiu, Hongtao Liu, Tao Cheng, Lin Zhang, Jian Yu

Abstract

The role of p53 in tissue protection is not well understood. Loss of p53 blocks apoptosis in the intestinal crypts following irradiation but paradoxically accelerates gastrointestinal (GI) damage and death. PUMA and p21 are the major mediators of p53-dependent apoptosis and cell-cycle checkpoints, respectively. To better understand these two arms of p53 response in radiation-induced GI damage, we compared animal survival, as well as apoptosis, proliferation, cell-cycle progression, DNA damage, and regeneration in the crypts of WT, p53 knockout (KO), PUMA KO, p21 KO, and p21/PUMA double KO (DKO) mice in a whole body irradiation model. Deficiency in p53 or p21 led to shortened survival but accelerated crypt regeneration associated with massive nonapoptotic cell death. Nonapoptotic cell death is characterized by aberrant cell-cycle progression, persistent DNA damage, rampant replication stress, and genome instability. PUMA deficiency alone enhanced survival and crypt regeneration by blocking apoptosis but failed to rescue delayed nonapoptotic crypt death or shortened survival in p21 KO mice. These studies help to better understand p53 functions in tissue injury and regeneration and to potentially improve strategies to protect or mitigate intestinal damage induced by radiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。