Self-Healing Electronics for Prognostic Monitoring of Methylated Circulating Tumor DNAs

用于甲基化循环肿瘤 DNA 预后监测的自修复电子设备

阅读:10
作者:Peilin Fang, Xianglin Ji, Xi Zhao, Richard Yan-Do, Youyang Wan, Ying Wang, Yuanting Zhang, Peng Shi

Abstract

Methylated circulating DNAs (ctDNAs) have recently been reported as a promising biomarker for early cancer diagnostics, but limited tools are currently available for continuous and dynamic profiling of ctDNAs and their methylation levels, especially when such assays need to be conducted in point-of-care (POC) scenarios. Here, a self-healing bioelectronic patch (iMethy) is developed that combines transdermal interstitial fluid (ISF) extraction and field effect transistor-based (FET-based) biosensing for dynamic monitoring of methylated ctDNAs as a prognostic approach for cancer risk management. The projection micro-stereolithography-based 3D patterning of an Eutectic Gallium-Indium (EGaIn) circuit with an unprecedented 10 µm resolution enables the construction of self-healing EGaIn microfluidic circuits that remain conductive under 100% strain and self-healing under severe destruction. In combination with continuous transdermal ISF sampling of methylated ctDNAs, iMethy can detect ctDNAs as low as 10-16 m in cellular models and is capable of phenotypic analysis of tumor growth in rodent animals. As the first demonstration of a wearable device for real-time in vivo analysis of disease-indicative biomarkers, this proof-of-concept study well demonstrated the potential of the iMethy platform for cancer risk management based on dynamic transdermal surveillance of methylated ctDNAs via a painless and self-administrable procedure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。