Myelofibrosis progression grading based on type I and type III collagen and fibrillin 1 expression boosted by whole slide image analysis

根据全切片图像分析增强的 I 型和 III 型胶原蛋白和纤维蛋白 1 表达对骨髓纤维化进展进行分级

阅读:19
作者:Tamas Szekely, Barna Wichmann, Mate E Maros, Annamaria Csizmadia, Csaba Bodor, Botond Timar, Tibor Krenacs

Aims

The progression of primary myelofibrosis is characterised by ongoing extracellular matrix deposition graded based on 'reticulin' and 'collagen' fibrosis, as revealed by Gomori's silver impregnation. Here we studied the expression of the major extracellular matrix proteins of fibrosis in relation to diagnostic silver grading supported by image analysis.

Conclusions

Through the in-situ detection of these extracellular matrix proteins, our results verify the molecular pathobiology of fibrosis during myelofibrosis progression. In particular, fibrillin 1 immunohistochemistry, with or without image analysis, can complement diagnostic silver grading at decent cell morphology.

Results

By using automated immunohistochemistry, in this study we demonstrate that the expression of both types I and III collagens and fibrillin 1 by bone marrow stromal cells can reveal the extracellular matrix scaffolding in line with myelofibrosis progression as classified by silver grading. 'Reticulin' fibrosis indicated by type III collagen expression and 'collagen' fibrosis featured by type I collagen expression were parallel, rather than sequential, events. This is line with the proposed role of type III collagen in regulating type I collagen fibrillogenesis. The uniformly strong fibrillin 1 immune signals offered the best inter-rater agreements and the highest statistical correlations with silver grading of the three markers, which was robustly confirmed by automated whole slide digital image analysis using a machine learning-based algorithm. The progressive up-regulation of fibrillin 1 during myelofibrosis may result from a negative feedback loop as fibrillin microfibrils sequester TGF-β, the major promoter of fibrosis. This can also reduce TGF-β-induced RANKL levels, which would stimulate osteoclastogenesis and thus can support osteosclerosis in advanced myelofibrosis. Conclusions: Through the in-situ detection of these extracellular matrix proteins, our results verify the molecular pathobiology of fibrosis during myelofibrosis progression. In particular, fibrillin 1 immunohistochemistry, with or without image analysis, can complement diagnostic silver grading at decent cell morphology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。