Overexpression of UBQLN1 reduces neuropathology in the P497S UBQLN2 mouse model of ALS/FTD

UBQLN1 的过度表达可降低 P497S UBQLN2 小鼠 ALS/FTD 模型中的神经病理学

阅读:6
作者:Shaoteng Wang, Micaela Tatman, Mervyn J Monteiro

Abstract

Missense mutations in UBQLN2 cause X-linked dominant inheritance of amyotrophic lateral sclerosis with frontotemporal dementia (ALS/FTD). UBQLN2 belongs to a family of four highly homologous proteins expressed in humans that play diverse roles in maintaining proteostasis, but whether one isoform can substitute for another is not known. Here, we tested whether overexpression of UBQLN1 can alleviate disease in the P497S UBQLN2 mouse model of ALS/FTD by crossing transgenic (Tg) mouse lines expressing the two proteins and characterizing the resulting genotypes using a battery of pathologic and behavioral tests. The pathologic findings revealed UBQLN1 overexpression dramatically reduced the burden of UBQLN2 inclusions, neuronal loss and disturbances in proteostasis in double Tg mice compared to single P497S Tg mice. The beneficial effects of UBQLN1 overexpression were primarily confirmed by behavioral improvements seen in rotarod performance and grip strength in male, but not female mice. Paradoxically, although UBQLN1 overexpression reduced pathologic signatures of disease in P497S Tg mice, female mice had larger percentage of body weight loss than males, and this correlated with a corresponding lack of behavioral improvements in the females. These findings lead us to speculate that methods to upregulate UBQLN1 expression may reduce pathogenicity caused by UBQLN2 mutations, but may also lead to gender-specific outcomes that will have to be carefully weighed with the therapeutic benefits of UBQLN1 upregulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。