Disturbance in transcriptomic profile, proliferation and multipotency in human mesenchymal stem cells caused by hexafluoropropylene oxides

六氟环氧丙烷引起人类间充质干细胞转录组谱、增殖和多能性的紊乱

阅读:6
作者:Yifan Pan, Hui Qin, Lu Zheng, Yong Guo, Wei Liu

Abstract

As alternatives to perfluorooctanoic acid (PFOA), hexafluoropropylene oxide dimer acid (HFPO-DA) and hexafluoropropylene oxide trimer acid (HFPO-TA) have raised concerns of their potential health risks. Human bone marrow mesenchymal stem cell was employed as an in vitro model to investigate the molecular targets and the adverse effects of HFPOs in stem cells in concentrations range starting at human relevant levels. Unsupervised transcriptomic analysis identified 1794 and 1429 DEGs affected by HFPO-TA and HFPO-DA, respectively. Cell cycle-associated biological processes were commonly altered by both chemicals. 18 and 35 KEGG pathways were enriched in HFPO-TA and HFPO-DA treatment group, respectively, among which multiple pathways were related to cancer and pluripotency. Few genes in PPAR signalling pathway were disturbed by HFPOs suggesting the involvement of PPAR-independent toxic mechanism. HFPO-TA promoted cell proliferation with significance at 1 μM mRNA levels of CDK and MYC were down-regulated by HFPOs, suggesting the negative feedback regulation to the abnormal cell proliferation. Decreased expression of CD44 protein, and ENG and THY1 mRNA levels demonstrated HFPOs-caused changes of hBMSCs phenotype. The osteogenic differentiation was also inhibited by HFPOs with reduced formation of calcium deposition. Furthermore, gene and protein expression of core pluripotency regulators NANOG was enhanced by HFPO-TA. The present study provides human relevant mechanistic evidence for health risk assessment of HFPOs, prioritizing comprehensive carcinogenicity assessment of this type of PFOA alternatives.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。