REPAIRx, a specific yet highly efficient programmable A > I RNA base editor

REPAIRx,一种高效且可编程的 A > I RNA 碱基编辑器

阅读:5
作者:Yajing Liu #, Shaoshuai Mao #, Shisheng Huang #, Yongqin Li #, Yuxin Chen, Minghui Di, Xinxin Huang, Junjun Lv, Xinxin Wang, Jianyang Ge, Shengxi Shen, Xiaoming Zhang, Dahai Liu, Xingxu Huang, Tian Chi

Abstract

Programmable A > I RNA editing is a valuable tool for basic research and medicine. A variety of editors have been created, but a genetically encoded editor that is both precise and efficient has not been described to date. The trade-off between precision and efficiency is exemplified in the state of the art editor REPAIR, which comprises the ADAR2 deaminase domain fused to dCas13b. REPAIR is highly efficient, but also causes significant off-target effects. Mutations that weaken the deaminase domain can minimize the undesirable effects, but this comes at the expense of on-target editing efficiency. We have now overcome this dilemma by using a multipronged approach: We have chosen an alternative Cas protein (CasRx), inserted the deaminase domain into the middle of CasRx, and redirected the editor to the nucleus. The new editor created, dubbed REPAIRx, is precise yet highly efficient, outperforming various previous versions on both mRNA and nuclear RNA targets. Thus, REPAIRx markedly expands the RNA editing toolkit and illustrates a novel strategy for base editor optimization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。