One Step In Situ Loading of CuS Nanoflowers on Anatase TiO2/Polyvinylidene Fluoride Fibers and Their Enhanced Photocatalytic and Self-Cleaning Performance

CuS 纳米花一步原位负载于锐钛矿 TiO2/聚偏氟乙烯纤维及其增强的光催化和自清洁性能

阅读:5
作者:Zhi-Guang Zhang, Hui Liu, Yu-Qian Cui, Min Dong, Qing-Hao Li, Xiao-Xiong Wang, Seeram Ramakrishna, Yun-Ze Long

Abstract

CuS nanoflowers were loaded on anatase TiO2/polyvinylidene fluoride (PVDF) fibers by hydrothermal treated electrospun tetrabutyl orthotitanate (TBOT)/PVDF fibers at low temperature. The results indicated that the amount of copper source and sulfur source determined the crystallization and morphology of the resultant products. It was found that the composite of CuS narrowed the band gap energy of TiO2 and enhanced the separation efficiency of the photogenerated electron-hole pairs of TiO2. The photocatalytic reaction rate of CuS/TiO2/PVDF fibers to rhodamine B was 3 times higher than that of TiO2/PVDF fibers under visible light irradiation. Besides, owing to the preparation process was carried out at low temperature, the flexibility of CuS/TiO2/PVDF fibers was ensured. In addition, the self-cleaning performance of the dye droplets on the resultant product surface was demonstrated under visible light. Meanwhile, the resultant product can automatically remove dust on the surface of the material under the rolling condition of droplets due to its hydrophobicity. Therefore, the as-prepared CuS/TiO2/PVDF fibers can not only degrade the contaminated compounds, but also depress the maintenance cost owing to its self-cleaning performance, which means a very practical application prospect.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。