Automated subset identification and characterization pipeline for multidimensional flow and mass cytometry data clustering and visualization

用于多维流式细胞术和质谱细胞术数据聚类和可视化的自动子集识别和表征流程

阅读:4
作者:Stephen Meehan #, Gleb A Kolyagin #, David Parks, Justin Youngyunpipatkul, Leonore A Herzenberg, Guenther Walther, Eliver E B Ghosn, Darya Y Orlova

Abstract

When examining datasets of any dimensionality, researchers frequently aim to identify individual subsets (clusters) of objects within the dataset. The ubiquity of multidimensional data has motivated the replacement of user-guided clustering with fully automated clustering. The fully automated methods are designed to make clustering more accurate, standardized and faster. However, the adoption of these methods is still limited by the lack of intuitive visualization and cluster matching methods that would allow users to readily interpret fully automatically generated clusters. To address these issues, we developed a fully automated subset identification and characterization (SIC) pipeline providing robust cluster matching and data visualization tools for high-dimensional flow/mass cytometry (and other) data. This pipeline automatically (and intuitively) generates two-dimensional representations of high-dimensional datasets that are safe from the curse of dimensionality. This new approach allows more robust and reproducible data analysis,+ facilitating the development of new gold standard practices across laboratories and institutions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。