Mesenchymal cells support the early retention of primary alveolar type 2 cells on acellular mouse lung scaffolds

间充质细胞支持原代肺泡 2 型细胞在无细胞小鼠肺支架上的早期保留

阅读:4
作者:Daisuke Taniguchi, Mohammadali Ahmadipour, Anthony L Eiliazadeh, Pascal Duchesneau, Takeshi Nagayasu, Siba Haykal, Golnaz Karoubi, Thomas K Waddell

Conclusions

Our results indicate that BMC support AT2 cell survival during the initial attachment and engraftment phase of recellularization. While our findings suggest only a short-term beneficial effect of BMC, our study demonstrates that AT2 cells can be delivered and retained in acellular lung scaffolds; thus with preconditioning and supporting cells, may be used for re-epithelialization. Selection and characterization of appropriate cell sources for use in recellularization, will be critical for ultimate clinical application.

Methods

AT2 cells and bone marrow-derived mesenchymal cells (BMC) were co-delivered to decellularized mouse lung scaffolds. Recellularized lungs were evaluated for cell surface coverage, viability, and differentiation at 1 and 4 days after cell seeding. Recellularization was evaluated via histological analysis and immunofluorescence.

Results

Simultaneous delivery of AT2 and BMC into acellular lung scaffolds resulted in enhanced cell surface coverage and reduced AT2 cell apoptosis in the recellularized scaffolds at Day 1 but not Day 4. AT2 cell number decreased after 4 days in both of AT2 only and codelivery groups suggesting limited expansion potential in the scaffold. After retention in the scaffold, AT2 cells differentiated into Aqp5-expressing cells. Conclusions: Our results indicate that BMC support AT2 cell survival during the initial attachment and engraftment phase of recellularization. While our findings suggest only a short-term beneficial effect of BMC, our study demonstrates that AT2 cells can be delivered and retained in acellular lung scaffolds; thus with preconditioning and supporting cells, may be used for re-epithelialization. Selection and characterization of appropriate cell sources for use in recellularization, will be critical for ultimate clinical application.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。