Simplified drug efficacy evaluation system for vasopressin neurodegenerative disease using mouse disease-specific induced pluripotent stem cells

利用小鼠疾病特异性诱导多能干细胞简化加压素神经退行性疾病药物疗效评估系统

阅读:11
作者:Tsutomu Miwata, Hidetaka Suga, Kazuki Mitsumoto, Jun Zhang, Yoshimasa Hamada, Mayu Sakakibara, Mika Soen, Hajime Ozaki, Tomoyoshi Asano, Takashi Miyata, Yohei Kawaguchi, Yoshinori Yasuda, Tomoko Kobayashi, Mariko Sugiyama, Takeshi Onoue, Daisuke Hagiwara, Shintaro Iwama, Seiichi Oyadomari, Hiroshi A

Abstract

Familial neurohypophyseal diabetes insipidus (FNDI) is a degenerative disorder in which vasopressin-secreting neurons degenerate over time due to the production of mutant proteins. We have demonstrated therapeutic effects of chemical chaperones in an FNDI mouse model, but the complexity and length of this evaluation were problematic. In this study, we established disease-specific mouse induced pluripotent stem cells (iPSCs) from FNDI-model mice and differentiated vasopressin neurons that produced mutant proteins. Fluorescence immunostaining showed that chemical chaperones appeared to protect vasopressin neurons generated from iPSCs derived from FNDI-model mice. Although KCL stimulation released vasopressin hormone from vasopressin neurons generated from FNDI-derived iPSCs, vasopressin hormone levels did not differ significantly between baseline and chaperone-added culture. Semi-quantification of vasopressin carrier protein and mutant protein volumes in vasopressin neurons confirmed that chaperones exerted a therapeutic effect. This research provides fundamental technology for creating in vitro disease models using human iPSCs and can be applied to therapeutic evaluation of various degenerative diseases that produce abnormal proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。