Cellular Trafficking of Sn-2 Phosphatidylcholine Prodrugs Studied with Fluorescence Lifetime Imaging and Super-resolution Microscopy

利用荧光寿命成像和超分辨率显微镜研究 Sn-2 磷脂酰胆碱前药的细胞运输

阅读:14
作者:Dolonchampa Maji, Jin Lu, Pinaki Sarder, Anne H Schmieder, Grace Cui, Xiaoxia Yang, Dipanjan Pan, Matthew D Lew, Samuel Achilefu, Gregory M Lanza

Abstract

While the in vivo efficacy of Sn-2 phosphatidylcholine prodrugs incorporated into targeted, non-pegylated lipid-encapsulated nanoparticles was demonstrated in prior preclinical studies, the microscopic details of cell prodrug internalization and trafficking events are unknown. Classic fluorescence microscopy, fluorescence lifetime imaging microscopy, and single-molecule super-resolution microscopy were used to investigate the cellular handling of doxorubicin-prodrug and AlexaFluor™-488-prodrug. Sn-2 phosphatidylcholine prodrugs delivered by hemifusion of nanoparticle and cell phospholipid membranes functioned as phosphatidylcholine mimics, circumventing the challenges of endosome sequestration and release. Phosphatidylcholine prodrugs in the outer cell membrane leaflet translocated to the inner membrane leaflet by ATP-dependent and ATP-independent mechanisms and distributed broadly within the cytosolic membranes over the next 12 h. A portion of the phosphatidylcholine prodrug populated vesicle membranes trafficked to the perinuclear Golgi/ER region, where the drug was enzymatically liberated and activated. Native doxorubicin entered the cells, passed rapidly to the nucleus, and bound to dsDNA, whereas DOX was first enzymatically liberated from DOX-prodrug within the cytosol, particularly in the perinuclear region, before binding nuclear dsDNA. Much of DOX-prodrug was initially retained within intracellular membranes. In vitro anti-proliferation effectiveness of the two drug delivery approaches was equivalent at 48 h, suggesting that residual intracellular DOX-prodrug may constitute a slow-release drug reservoir that enhances effectiveness. We have demonstrated that Sn-2 phosphatidylcholine prodrugs function as phosphatidylcholine mimics following reported pathways of phosphatidylcholine distribution and metabolism. Drug complexed to the Sn-2 fatty acid is enzymatically liberated and reactivated over many hours, which may enhance efficacy overtime.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。