Medial septum activation improves strategy switching once strategies are well-learned via bidirectional regulation of dopamine neuron population activity

一旦通过双向调节多巴胺神经元群体活动,内侧隔膜激活就会改善策略转换

阅读:7
作者:David M Bortz, Catalina M Feistritzer, Cassidy C Power, Anthony A Grace

Abstract

Strategy switching is a form of cognitive flexibility that requires inhibiting a previously successful strategy and switching to a new strategy of a different categorical modality. It is dependent on dopamine (DA) receptor activation and release in ventral striatum and prefrontal cortex, two primary targets of ventral tegmental area (VTA) DA projections. Although the circuitry that underlies strategy switching early in learning has been studied, few studies have examined it after extended discrimination training. This may be important as DA activity and release patterns change across learning, with several studies demonstrating a critical role for substantia nigra pars compacta (SNc) DA activity and release once behaviors are well-learned. We have demonstrated that medial septum (MS) activation simultaneously increased VTA and decreased SNc DA population activity, as well as improved reversal learning via these actions on DA activity. We hypothesized that MS activation would improve strategy switching both early in learning and after extended training through its ability to increase VTA DA population activity and decrease SNc DA population activity, respectively. We chemogenetically activated the MS of male and female rats and measured their performance on an operant-based strategy switching task following 1, 10, or 15 days of discrimination training. Contrary to our hypothesis, MS activation did not affect strategy switching after 1 day of discrimination training. MS activation improved strategy switching after 10 days of training, but only in females. MS activation improved strategy switching in both sexes after 15 days of training. Infusion of bicuculline into the ventral subiculum (vSub) inhibited the MS-mediated decrease in SNc DA population activity and attenuated the improvement in strategy switching. Intra-vSub infusion of scopolamine inhibited the MS-mediated increase in VTA DA population activity but did not affect the improvement in strategy switching. Intra-vSub infusion of both bicuculline and scopolamine inhibited the MS-mediated effects on DA population activity in both the SNc and VTA and completely prevented the improvement in strategy switching. These data indicate that MS activation improves strategy switching once the original strategy has been sufficiently well-learned, and that this may occur via the MS's regulation of DA neuron responsivity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。