Nitric oxide synthase inhibition enhances the antitumor effect of radiation in the treatment of squamous carcinoma xenografts

一氧化氮合酶抑制增强放射治疗鳞状癌异种移植的抗肿瘤作用

阅读:5
作者:Robert J G Cardnell, Ross B Mikkelsen

Abstract

This study tests whether the nitric oxide synthase (NOS) inhibitor, N(G)-nitro-L-arginine (L-NNA), combines favorably with ionizing radiation (IR) in controlling squamous carcinoma tumor growth. Animals bearing FaDu and A431 xenografts were treated with L-NNA in the drinking water. IR exposure was 10 Gy for tumor growth and survival studies and 4 Gy for ex vivo clonogenic assays. Cryosections were examined immunohistochemically for markers of apoptosis and hypoxia. Blood flow was assayed by fluorescent microscopy of tissue cryosections after i.v. injection of fluorospheres. Orally administered L-NNA for 24 hrs reduces tumor blood flow by 80% (p<0.01). Within 24 hrs L-NNA treatment stopped tumor growth for at least 10 days before tumor growth again ensued. The growth arrest was in part due to increased cell killing since a combination of L-NNA and a single 4 Gy IR caused 82% tumor cell killing measured by an ex vivo clonogenic assay compared to 49% by L-NNA or 29% by IR alone. A Kaplan-Meyer analysis of animal survival revealed a distinct survival advantage for the combined treatment. Combining L-NNA and IR was also found to be at least as effective as a single i.p. dose of cisplatin plus IR. In contrast to the in vivo studies, exposure of cells to L-NNA in vitro was without effect on clonogenicity with or without IR. Western and immunochemical analysis of expression of a number of proteins involved in NO signaling indicated that L-NNA treatment enhanced arginase-2 expression and that this may represent vasculature remodeling and escape from NOS inhibition. For tumors such as head and neck squamous carcinomas that show only modest responses to inhibitors of specific angiogenic pathways, targeting NO-dependent pro-survival and angiogenic mechanisms in both tumor and supporting stromal cells may present a potential new strategy for tumor control.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。