Intestinal commensal bacteria mediate lung mucosal immunity and promote resistance of newborn mice to infection

肠道共生菌介导肺黏膜免疫并促进新生小鼠抵抗感染

阅读:8
作者:Jerilyn Gray, Katherine Oehrle, George Worthen, Theresa Alenghat, Jeffrey Whitsett, Hitesh Deshmukh

Abstract

Immature mucosal defenses contribute to increased susceptibility of newborn infants to pathogens. Sparse knowledge of age-dependent changes in mucosal immunity has hampered improvements in neonatal morbidity because of infections. We report that exposure of neonatal mice to commensal bacteria immediately after birth is required for a robust host defense against bacterial pneumonia, the leading cause of death in newborn infants. This crucial window was characterized by an abrupt influx of interleukin-22 (IL-22)-producing group 3 innate lymphoid cells (IL-22+ILC3) into the lungs of newborn mice. This influx was dependent on sensing of commensal bacteria by intestinal mucosal dendritic cells. Disruption of postnatal commensal colonization or selective depletion of dendritic cells interrupted the migratory program of lung IL-22+ILC3 and made the newborn mice more susceptible to pneumonia, which was reversed by transfer of commensal bacteria after birth. Thus, the resistance of newborn mice to pneumonia relied on commensal bacteria-directed ILC3 influx into the lungs, which mediated IL-22-dependent host resistance to pneumonia during this developmental window. These data establish that postnatal colonization by intestinal commensal bacteria is pivotal in the development of the lung defenses of newborns.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。