Effects of Treatment Conditions on Pd Speciation in CHA and Beta Zeolites for Passive NO x Adsorption

处理条件对 CHA 和 Beta 沸石中 Pd 形态的影响

阅读:8
作者:Robert B Pace, Trevor M Lardinois, Yaying Ji, Rajamani Gounder, Olivier Heintz, Mark Crocker

Abstract

The structure and evolution of Pd species in Pd-exchanged zeolite materials intended for use as passive NO x adsorbers were examined under various pretreatment conditions. Using in situ CO-diffuse reflectance infrared spectroscopy, Pd structures were characterized after 500 °C pretreatments in inert (Ar), water (1-2% H2O in Ar), oxidizing (air), and reducing (H2, CO) atmospheres. Two zeolites of similar Si/Al ratios but different framework topologies (Beta, CHA) were found to show different distributions of Pd species, depending on the reducing agent used. Reduction in H2 (500 °C; 10% H2 in Ar) followed by re-oxidation (500 °C; air) led to higher amounts of single-site Pd ions on Pd-CHA than Pd-Beta, whereas high-temperature reduction in CO (500 °C; 1000 ppm CO in Ar) followed by re-oxidation (500 °C; air) led to significant loss of ionic Pd on both Pd-CHA and Pd-Beta, albeit H2 temperature-programmed reduction and XPS experiments suggest that this phenomena may be limited to surface Pd. High-temperature treatments with water (500 °C; 1-2% H2O in Ar) are shown to form either Pd metal or PdO particles, with Pd-Beta being more susceptible to these effects than Pd-CHA. This work suggests that the effects of CO are especially problematic with respect to the durability of these materials in passive NO x adsorption applications, especially in the case of Beta zeolite.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。