Designing and Testing of Novel Taxanes to Probe the Highly Complex Mechanisms by Which Taxanes Bind to Microtubules and Cause Cytotoxicity to Cancer Cells

设计和测试新型紫杉烷,以探究紫杉烷与微管结合并对癌细胞产生细胞毒性的高度复杂机制

阅读:16
作者:Marc St George, Ahmed T Ayoub, Asok Banerjee, Cassandra D M Churchill, Philip Winter, Mariusz Klobukowski, Carol E Cass, Richard F Ludueña, Jack A Tuszynski, Sambasivarao Damaraju

Abstract

Our previous work identified an intermediate binding site for taxanes in the microtubule nanopore. The goal of this study was to test derivatives of paclitaxel designed to bind to this intermediate site differentially depending on the isotype of β-tubulin. Since β-tubulin isotypes have tissue-dependent expression--specifically, the βIII isotype is very abundant in aggressive tumors and much less common in normal tissues--this is expected to lead to tubulin targeted drugs that are more efficacious and have less side effects. Seven derivatives of paclitaxel were designed and four of these were amenable for synthesis in sufficient purity and yield for further testing in breast cancer model cell lines. None of the derivatives studied were superior to currently used taxanes, however computer simulations provided insights into the activity of the derivatives. Our results suggest that neither binding to the intermediate binding site nor the final binding site is sufficient to explain the activities of the derivative taxanes studied. These findings highlight the need to iteratively improve on the design of taxanes based on their activity in model systems. Knowledge gained on the ability of the engineered drugs to bind to targets and bring about activity in a predictable manner is a step towards personalizing therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。