Asymmetric PI(3,4,5)P3 and Akt signaling mediates chemotaxis of axonal growth cones

不对称的PI(3,4,5)P3和Akt信号传导介导轴突生长锥的趋化性

阅读:2
作者:Steven J Henle ,Gordon Wang, Ellen Liang, May Wu, Mu-Ming Poo, John R Henley

Abstract

The action of many extracellular guidance cues on axon pathfinding requires Ca2+ influx at the growth cone (Hong et al., 2000; Nishiyama et al., 2003; Henley and Poo, 2004), but how activation of guidance cue receptors leads to opening of plasmalemmal ion channels remains largely unknown. Analogous to the chemotaxis of amoeboid cells (Parent et al., 1998; Servant et al., 2000), we found that a gradient of chemoattractant triggered rapid asymmetric PI(3,4,5)P3 accumulation at the growth cone's leading edge, as detected by the translocation of a GFP-tagged binding domain of Akt in Xenopus laevis spinal neurons. Growth cone chemoattraction required PI(3,4,5)P3 production and Akt activation, and genetic perturbation of polarized Akt activity disrupted axon pathfinding in vitro and in vivo. Furthermore, patch-clamp recording from growth cones revealed that exogenous PI(3,4,5)P3 rapidly activated TRP (transient receptor potential) channels, and asymmetrically applied PI(3,4,5)P3 was sufficient to induce chemoattractive growth cone turning in a manner that required downstream Ca2+ signaling. Thus, asymmetric PI(3,4,5)P3 elevation and Akt activation are early events in growth cone chemotaxis that link receptor activation to TRP channel opening and Ca2+ signaling. Altogether, our findings reveal that PI(3,4,5)P3 elevation polarizes to the growth cone's leading edge and can serve as an early regulator during chemotactic guidance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。