In silico tandem affinity purification refines an Oct4 interaction list

通过计算机串联亲和纯化精炼出 Oct4 相互作用列表

阅读:6
作者:Clara Yujing Cheong, Patricia Miang Lon Ng, Rhonda Ponnampalam, Heng-Hang Tsai, Guillaume Bourque, Thomas Lufkin

Conclusions

Using a total of four different tags, we found 33 potential Oct4 interactors, of which 30 are novel. In addition to transcriptional regulation, the molecular function associated with these Oct4-associated proteins includes various other catalytic activities, suggesting that, aside from chromosome remodeling and transcriptional regulation, Oct4 function extends more widely to other essential cellular mechanisms. Our findings show that multiple purification approaches are needed to uncover a comprehensive Oct4 protein interaction network.

Methods

In the present study, affinity-tagged endogenous Oct4 cell lines were established via homologous recombination gene targeting in embryonic stem (ES) cells to express tagged Oct4. This allows tagged Oct4 to be expressed without altering the total Oct4 levels from their physiological levels.

Results

Modified ES cells remained pluripotent. However, when modified ES cells were tested for their functionality, cells with a large tag failed to produce viable homozygous mice. Use of a smaller tag resulted in mice with normal development, viability and fertility. This indicated that the choice of tags can affect the performance of Oct4. Also, different tags produce a different repertoire of Oct4 interactors. Conclusions: Using a total of four different tags, we found 33 potential Oct4 interactors, of which 30 are novel. In addition to transcriptional regulation, the molecular function associated with these Oct4-associated proteins includes various other catalytic activities, suggesting that, aside from chromosome remodeling and transcriptional regulation, Oct4 function extends more widely to other essential cellular mechanisms. Our findings show that multiple purification approaches are needed to uncover a comprehensive Oct4 protein interaction network.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。