Tonic nicotinic transmission enhances spinal GABAergic presynaptic release and the frequency of spontaneous network activity

紧张性烟碱传递增强脊髓 GABA 能突触前释放和自发网络活动频率

阅读:4
作者:Carlos Gonzalez-Islas, Miguel Angel Garcia-Bereguiain, Brendan O'Flaherty, Peter Wenner

Abstract

Synaptically driven spontaneous network activity (SNA) is observed in virtually all developing networks. Recurrently connected spinal circuits express SNA, which drives fetal movements during a period of development when GABA is depolarizing and excitatory. Blockade of nicotinic acetylcholine receptor (nAChR) activation impairs the expression of SNA and the development of the motor system. It is mechanistically unclear how nicotinic transmission influences SNA, and in this study we tested several mechanisms that could underlie the regulation of SNA by nAChRs. We find evidence that is consistent with our previous work suggesting that cholinergically driven Renshaw cells can initiate episodes of SNA. While Renshaw cells receive strong nicotinic synaptic input, we see very little evidence suggesting other spinal interneurons or motoneurons receive nicotinic input. Rather, we found that nAChR activation tonically enhanced evoked and spontaneous presynaptic release of GABA in the embryonic spinal cord. Enhanced spontaneous and/or evoked release could contribute to increased SNA frequency. Finally, our study suggests that blockade of nAChRs can reduce the frequency of SNA by reducing probability of GABAergic release. This result suggests that the baseline frequency of SNA is maintained through elevated GABA release driven by tonically active nAChRs. Nicotinic receptors regulate GABAergic transmission and SNA, which are critically important for the proper development of the embryonic network. Therefore, our results provide a better mechanistic framework for understanding the motor consequences of fetal nicotine exposure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。