Signaling role of CD36 in platelet activation and thrombus formation on immobilized thrombospondin or oxidized low-density lipoprotein

CD36 在血小板活化和固定化血小板反应蛋白或氧化低密度脂蛋白上的血栓形成中的信号传导作用

阅读:6
作者:R Nergiz-Unal, M M E Lamers, R Van Kruchten, J J Luiken, J M E M Cosemans, J F C Glatz, M J E Kuijpers, J W M Heemskerk

Conclusions

Immobilized TSP1 and oxLDL activate platelets partly via CD36 through a Syk kinase-dependent Ca(2+) signaling mechanism, which enhances collagen-dependent thrombus formation under flow. These findings provide novel insight into the role of CD36 in hemostasis.

Objective

Platelets abundantly express glycoprotein CD36 with thrombospondin-1 (TSP1) and oxidized low-density lipoprotein (oxLDL) as proposed ligands. How these agents promote platelet activation is still poorly understood.

Results

Both TSP1 and oxLDL caused limited activation of platelets in suspension. However, immobilized TSP1 and oxLDL, but not LDL, strongly supported platelet adhesion and spreading with a major role of CD36. Platelet spreading was accompanied by potent Ca(2+) rises, and resulted in exposure of P-selectin and integrin activation, all in a CD36-dependent manner with additional contributions of α(IIb) β(3) and ADP receptor stimulation. Signaling responses via CD36 involved activation of the protein tyrosine kinase Syk. In whole blood perfusion, co-coating of TSP1 or oxLDL with collagen enhanced thrombus formation at high-shear flow conditions, with increased expression on platelets of activated α(IIb) β(3), P-selectin and phosphatidylserine, again in a CD36-dependent way. Conclusions: Immobilized TSP1 and oxLDL activate platelets partly via CD36 through a Syk kinase-dependent Ca(2+) signaling mechanism, which enhances collagen-dependent thrombus formation under flow. These findings provide novel insight into the role of CD36 in hemostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。