Dihydroxyacetone suppresses mTOR nutrient signaling and induces mitochondrial stress in liver cells

二羟基丙酮抑制 mTOR 营养信号并诱导肝细胞线粒体应激

阅读:7
作者:Arlet Hernandez, Manoj Sonavane, Kelly R Smith, Jensyn Seiger, Marie E Migaud, Natalie R Gassman

Abstract

Dihydroxyacetone (DHA) is the active ingredient in sunless tanning products and a combustion product from e-juices in electronic cigarettes (e-cigarettes). DHA is rapidly absorbed in cells and tissues and incorporated into several metabolic pathways through its conversion to dihydroxyacetone phosphate (DHAP). Previous studies have shown DHA induces cell cycle arrest, reactive oxygen species, and mitochondrial dysfunction, though the extent of these effects is highly cell-type specific. Here, we investigate DHA exposure effects in the metabolically active, HepG3 (C3A) cell line. Metabolic and mitochondrial changes were evaluated by characterizing the effects of DHA in metabolic pathways and nutrient-sensing mechanisms through mTOR-specific signaling. We also examined cytotoxicity and investigated the cell death mechanism induced by DHA exposure in HepG3 cells. Millimolar doses of DHA were cytotoxic and suppressed glycolysis and oxidative phosphorylation pathways. Nutrient sensing through mTOR was altered at both short and long time points. Increased mitochondrial reactive oxygen species (ROS) and mitochondrial-specific injury induced cell cycle arrest and cell death through a non-classical apoptotic mechanism. Despite its carbohydrate nature, millimolar doses of DHA are toxic to liver cells and may pose a significant health risk when higher concentrations are absorbed through e-cigarettes or spray tanning.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。