Direct inference and control of genetic population structure from RNA sequencing data

从 RNA 测序数据直接推断和控制遗传群体结构

阅读:5
作者:Muhamad Fachrul, Abhilasha Karkey, Mila Shakya, Louise M Judd, Taylor Harshegyi, Kar Seng Sim, Susan Tonks, Sabina Dongol, Rajendra Shrestha, Agus Salim; STRATAA study group; Stephen Baker, Andrew J Pollard, Chiea Chuen Khor, Christiane Dolecek, Buddha Basnyat, Sarah J Dunstan, Kathryn E Holt, Micha

Abstract

RNAseq data can be used to infer genetic variants, yet its use for estimating genetic population structure remains underexplored. Here, we construct a freely available computational tool (RGStraP) to estimate RNAseq-based genetic principal components (RG-PCs) and assess whether RG-PCs can be used to control for population structure in gene expression analyses. Using whole blood samples from understudied Nepalese populations and the Geuvadis study, we show that RG-PCs had comparable results to paired array-based genotypes, with high genotype concordance and high correlations of genetic principal components, capturing subpopulations within the dataset. In differential gene expression analysis, we found that inclusion of RG-PCs as covariates reduced test statistic inflation. Our paper demonstrates that genetic population structure can be directly inferred and controlled for using RNAseq data, thus facilitating improved retrospective and future analyses of transcriptomic data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。