Molecular and cellular characterization of an AT-hook protein from Leishmania

利什曼原虫 AT 钩蛋白的分子和细胞表征

阅读:7
作者:Ben L Kelly, Gyanendra Singh, Ashok Aiyar

Abstract

AT-rich DNA, and the proteins that bind it (AT-hook proteins), modulate chromosome structure and function in most eukaryotes. Unlike other trypanosomatids, the genome of Leishmania species is unusually GC-rich, and the regulation of Leishmania chromosome structure, replication, partitioning is not fully understood. Because AT-hook proteins modulate these functions in other eukaryotes, we examined whether AT-hook proteins are encoded in the Leishmania genome, to test their potential functions. Several Leishmania ORFs predicted to be AT-hook proteins were identified using in silico approaches based on sequences shared between eukaryotic AT-hook proteins. We have used biochemical, molecular and cellular techniques to characterize the L. amazonensis ortholog of the L. major protein LmjF06.0720, a potential AT-hook protein that is highly conserved in Leishmania species. Using a novel fusion between the AT-hook domain encoded by LmjF06.0720 and a herpesviral protein, we have demonstrated that LmjF06.0720 functions as an AT-hook protein in mammalian cells. Further, as observed for mammalian and viral AT-hook proteins, the AT-hook domains of LmjF06.0720 bind specific regions of condensed mammalian metaphase chromosomes, and support the licensed replication of DNA in mammalian cells. LmjF06.0720 is nuclear in Leishmania, and this localization is disrupted upon exposure to drugs that displace AT-hook proteins from AT-rich DNA. Coincidentally, these drugs dramatically alter the cellular physiology of Leishmania promastigotes. Finally, we have devised a novel peptido-mimetic agent derived from the sequence of LmjF06.0720 that blocks the proliferation of Leishmania promastigotes, and lowers amastigote parasitic burden in infected macrophages. Our results indicate that AT-hook proteins are critical for the normal biology of Leishmania. In addition, we have described a simple technique to examine the function of Leishmania chromatin-binding proteins in a eukaryotic context amenable to studying chromosome structure and function. Lastly, we demonstrate the therapeutic potential of compounds directed against AT-hook proteins in Leishmania.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。