Hybrid gene misregulation in multiple developing tissues within a recent adaptive radiation of Cyprinodon pupfishes

近期适应性辐射使鲤鱼多个发育组织中出现杂交基因失调

阅读:5
作者:Joseph A McGirr, Christopher H Martin

Abstract

Genetic incompatibilities constitute the final stages of reproductive isolation and speciation, but little is known about incompatibilities that occur within recent adaptive radiations among closely related diverging populations. Crossing divergent species to form hybrids can break up coadapted variation, resulting in genetic incompatibilities within developmental networks shaping divergent adaptive traits. We crossed two closely related sympatric Cyprinodon pupfish species-a dietary generalist and a specialized molluscivore-and measured expression levels in their F1 hybrids to identify regulatory variation underlying the novel craniofacial morphology found in this recent microendemic adaptive radiation. We extracted mRNA from eight day old whole-larvae tissue and from craniofacial tissues dissected from 17-20 day old larvae to compare gene expression between a total of seven F1 hybrids and 24 individuals from parental species populations. We found 3.9% of genes differentially expressed between generalists and molluscivores in whole-larvae tissues and 0.6% of genes differentially expressed in craniofacial tissue. We found that 2.1% of genes were misregulated in whole-larvae hybrids whereas 19.1% of genes were misregulated in hybrid craniofacial tissues, after correcting for sequencing biases. We also measured allele specific expression across 15,429 heterozygous sites to identify putative compensatory regulatory mechanisms underlying differential expression between generalists and molluscivores. Together, our results highlight the importance of considering misregulation as an early indicator of genetic incompatibilities in the context of rapidly diverging adaptive radiations and suggests that compensatory regulatory divergence drives hybrid gene misregulation in developing tissues that give rise to novel craniofacial traits.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。