Caffeic acid attenuates irradiation-induced hematopoietic stem cell apoptosis through inhibiting mitochondrial damage

咖啡酸通过抑制线粒体损伤减轻辐射引起的造血干细胞凋亡

阅读:4
作者:Xinmiao Wang, Weinian Liao, Jun Chen, Yiding Wu, Chaonan Liu, Shilei Chen, Yang Xu, Song Wang, Yongping Su, Changhong Du, Junping Wang

Abstract

Hematopoietic stem cells (HSCs) are sensitive to ionizing radiation (IR) damage, and its injury is the primary cause of bone marrow (BM) hematopoietic failure and even death after exposure to a certain dose of IR. However, the underlying mechanisms remain incompletely understood. Here we show that mitochondrial oxidative damage, which is characterized by mitochondrial reactive oxygen species overproduction, mitochondrial membrane potential reduction and mitochondrial permeability transition pore opening, is rapidly induced in both human and mouse HSCs and directly accelerates HSC apoptosis after IR exposure. Mechanistically, 5-lipoxygenase (5-LOX) is induced by IR exposure and contributes to IR-induced mitochondrial oxidative damage through inducing lipid peroxidation. Intriguingly, a natural antioxidant, caffeic acid (CA), can attenuate IR-induced HSC apoptosis through suppressing 5-LOX-mediated mitochondrial oxidative damage, thus protecting against BM hematopoietic failure after IR exposure. These findings uncover a critical role for mitochondria in IR-induced HSC injury and highlight the therapeutic potential of CA in BM hematopoietic failure induced by IR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。