Physicochemical and Inflammatory Analysis of Unconjugated and Conjugated Bone-Binding Carbon Dots

未结合和结合骨结合碳点的物理化学和炎症分析

阅读:5
作者:Quan Chau, Lesly Corado-Santiago, Shannon Jones, Jonathan Dattelbaum, Isaac Skromne

Abstract

Carbon nanodots (CDs) have drawn significant attention for their potential uses in diagnostic and therapeutic applications due to their small size, tissue biocompatibility, stable photoluminescence, and modifiable surface groups. However, the effect of cargo molecules on CD photoluminescence and their ability to interact with tissues are not fully understood. Our previous work has shown that CDs produced from the acidic oxidation of carbon nanopowder can bind to mineralized bone with high affinity and specificity in a zebrafish animal model system. Using this model, we investigated the impact of loading Cy5 and biotin cargo on CDs' photoluminescence and bone-binding properties. We report that CD cargo loading alters CD photoluminescence in a pH- and cargo-dependent manner without interfering with the CDs' bone binding properties. In a reciprocal analysis, we show that cargo loading of CDs does not affect the cargo's fluorescence. Significantly, CDs do not trigger nitric oxide production in a mouse macrophage assay, suggesting that they are noninflammatory. Together, these results further support the development of carbon nanopowder-derived CDs for the precise delivery of therapeutic agents to bone tissue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。