Slow Intrathecal Injection of rAAVrh10 Enhances its Transduction of Spinal Cord and Therapeutic Efficacy in a Mutant SOD1 Model of ALS

缓慢鞘内注射 rAAVrh10 可增强其在突变型 SOD1 ALS 模型中的脊髓转导和治疗效果

阅读:7
作者:Dongxiao Li, Chong Liu, Chunxing Yang, Dan Wang, Dongxia Wu, Yinkuang Qi, Qin Su, Guangping Gao, Zuoshang Xu, Yansu Guo

Abstract

Mutant SOD1 causes amyotrophic lateral sclerosis (ALS) by a dominant gain of toxicity. Previous studies have demonstrated therapeutic potential of mutant SOD1-RNAi delivered by intrathecal (IT) injection of recombinant adeno-associated virus (rAAV). However, optimization of delivery is needed to overcome the high degree of variation in the transduction efficiency and therapeutic efficacy. Here, on the basis of our previously defined, efficient IT injection method, we investigated the influence of injection speed on transduction efficiency in the central nervous system (CNS). We demonstrate that slow IT injection results in higher transduction of spinal cord and dorsal root ganglia (DRG) while fast IT injection leads to higher transduction of brain and peripheral organs. To test how these effects influence the outcome of RNAi therapy, we used slow and fast IT injection to deliver rAAVrh10-GFP-amiR-SOD1, a rAAV vector that expresses GFP and an artificial miRNA targeting SOD1, in SOD1-G93A mice. Both slow and fast IT injection produced therapeutic efficacy but the slow injection trended slightly toward a better outcome than the fast injection. These results demonstrate that IT injection speed influences the predominance of gene delivery at different CNS sites and should be taken into consideration in future therapeutic trials involving IT injection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。