Enhanced Adsorption of Toxic and Biologically Active Levofloxacin Residuals from Wastewater Using Clay Nanotubes as a Novel Fixed Bed: Column Performance and Optimization

使用粘土纳米管作为新型固定床增强废水中有毒和生物活性左氧氟沙星残留物的吸附:柱性能和优化

阅读:6
作者:Mostafa R Abukhadra, Aya S Mohamed, Ahmed M El-Sherbeeny, Ahmed Tawhid Ahmed Soliman

Abstract

Kaolinite nanotube particles (KNTs) were synthesized by a chemical exfoliation and scrolling process in the existence of sonication waves. The KNT product was identified as a mesoporous material (12 nm in pore diameter) with high surface area (105 m2/g) and promising adsorption affinity for the levofloxacin antibiotic (LVOX) residuals in wastewater. The KNT particles were used as a fixed bed in the continuous adsorption column system for LVOX considering the essential variables. The investigation of the KNT fixed bed in a continuous column for 1800 min verified its suitability to reduce the LVOX content in 9 L of polluted solutions by 80.4%. This was recognized after using the KNT bed of 4 cm in height, a flow rate of 5 mL/min, a pH value of 8, a total flow interval of 1800 min, and an LVOX concentration of 10 mg/L. The regeneration study of the bed declared effective recyclability properties for the KNT particles in the LVOX adsorption column system. The dynamic properties of the KNT bed-based column system were explained based on Thomas, Adams-Bohart, and the Yoon-Nelson kinetic models. The LVOX adsorption reaction by KNTs follows Langmuir behavior with homogeneous and monolayer uptake form. The Gaussian energy (2.05 kJ/mol) and the thermodynamic parameters emphasized physical, spontaneous, and exothermic adsorption reactions for LVOX by KNTs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。