Time-resolved detection of stimulus/task-related networks, via clustering of transient intersubject synchronization

通过对瞬态主体间同步进行聚类,对刺激/任务相关网络进行时间分辨检测

阅读:5
作者:Cécile Bordier, Emiliano Macaluso

Abstract

Several methods are available for the identification of functional networks of brain areas using functional magnetic resonance imaging (fMRI) time-series. These typically assume a fixed relationship between the signal of the areas belonging to the same network during the entire time-series (e.g., positive correlation between the areas belonging to the same network), or require a priori information about when this relationship may change (task-dependent changes of connectivity). We present a fully data-driven method that identifies transient network configurations that are triggered by the external input and that, therefore, include only regions involved in stimulus/task processing. Intersubject synchronization with short sliding time-windows was used to identify if/when any area showed stimulus/task-related responses. Next, a first clustering step grouped together areas that became engaged concurrently and repetitively during the time-series (stimulus/task-related networks). Finally, for each network, a second clustering step grouped together all the time-windows with the same BOLD signal. The final output consists of a set of network configurations that show stimulus/task-related activity at specific time-points during the fMRI time-series. We label these configurations: "brain modes" (bModes). The method was validated using simulated datasets and a real fMRI experiment with multiple tasks and conditions. Future applications include the investigation of brain functions using complex and naturalistic stimuli.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。