The medial septum enhances reversal learning via opposing actions on ventral tegmental area and substantia nigra dopamine neurons

内侧隔膜通过对腹侧被盖区和黑质多巴胺神经元的相反作用增强逆向学习

阅读:7
作者:D M Bortz, K L Gazo, A A Grace

Abstract

Cognitive flexibility deficits are one of the most pervasive symptoms across psychiatric disorders, making continued investigation of the circuitry underlying this function a top priority. Medial septum (MS) lesions lead to perseverative, inflexible-type behavior; however, a role for this region in cognitive flexibility circuitry has never been examined. We activated the MS (DREADDs) and measured performance in a T-maze spatial reversal learning task in male Sprague-Dawley rats. Systemic activation of the MS (CNO) significantly decreased both trials to perform a reversal and entries into the previously baited arm. Intra-ventral subiculum CNO enhanced reversal learning in the same manner as systemic CNO and also significantly increased ventral tegmental area and decreased substantia nigra dopamine neuron population activity. Finally, co-injection of the D1 antagonist SCH23390 with CNO prevented the enhanced reversal learning performance seen in the previous two experiments. Taken together, these data suggest a key role for the MS in cognitive flexibility, and suggest that MS-mediated changes in midbrain dopamine neuron population activity could be one mechanism by which this occurs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。