Unresolved intramuscular inflammation, not diminished skeletal muscle regenerative capacity, is at the root of rheumatoid cachexia: insights from a rat CIA model

未解决的肌内炎症,而非骨骼肌再生能力下降,是类风湿恶病质的根源:从大鼠 CIA 模型中得出的见解

阅读:4
作者:Tracey Ollewagen, Yigael S L Powrie, Kathryn H Myburgh, Carine Smith

Abstract

Rheumatoid arthritis targets numerous organs in patients, including the skeletal muscle, resulting in rheumatoid cachexia. In the muscle niche, satellite cells, macrophages, and myofibroblasts may be affected and the factors they release altered. This study aimed to assess these cell types, cytokines, and growth factors and their relationships to muscle fiber size and number in a rodent collagen-induced arthritis (CIA) model, in order to identify new therapeutic targets. Fiber cross-sectional area (CSA) was 57% lower in CIA than controls (p < 0.0001), thus smaller but more fibers visible per field of view. Immunostaining indicated the increased presence of satellite cells, macrophages, myofibroblasts, and myonuclei per field of view in CIA (p < 0.01), but this finding was not maintained when taking fiber number into consideration. Western blots of gastrocnemius samples indicated that tumor necrosis factor-α was significantly elevated (p < 0.01) while interleukin-10 (IL-10) was decreased (p < 0.05) in CIA. This effect was maintained (and heightened for IL-10) when expressed per fiber number. Myogenic regulatory factors (MyoD and myogenin), transforming growth factor-β and inhibitor of differentiation were significantly elevated in CIA muscle and levels correlated significantly with CSA. Several of these factors remained elevated, but bone morphogenetic protein-7 decreased when considering fiber number per area. In conclusion, CIA-muscle demonstrated a good regenerative response. Myoblast numbers per fiber were not elevated, suggesting their activity results from the persistent inflammatory signaling which also significantly hampered maintenance of muscle fiber size. A clearer picture of signaling events at cellular level in arthritis muscle may be derived from expressing data per fiber.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。