BDNF-overexpressing human umbilical cord mesenchymal stem cell-derived motor neurons improve motor function and prolong survival in amyotrophic lateral sclerosis mice

BDNF 过度表达的人脐带间充质干细胞衍生的运动神经元可改善肌萎缩侧索硬化症小鼠的运动功能并延长生存期

阅读:7
作者:Jie Wang, Weiwei Hu, Zehua Feng, Meijiang Feng

Conclusions

Transplantation of BDNF-overexpressing hUC-MSC-derived motor neurons can improve motor performance and prolong the survival of hSOD1G93A mice. Combining stem cell-derived motor neurons with BDNF might provide a new therapeutic strategy for ALS.

Methods

The BDNF gene was transfected into hUC-MSC-derived motor neurons by the lentivirus-mediated method. hSOD1G93A mice were assigned to the ALS, ALS/MN, and ALS/MN-BDNF groups, and intrathecally administrated phosphate-buffered saline (PBS), motor neurons, or motor neurons overexpressing BDNF, respectively. The control group included non-transgenic wild-type littermates administrated PBS. One month after transplantation, the motor function of the mice was assessed by the rotarod test, and the lumbar enlargements were then isolated to detect the expression of hSOD1 and BDNF by western blotting, and the expression of choline acetyltransferase (ChAT), homeobox protein 9 (HB9), major histocompatibility complex I (MHCI) and microtubule-associated protein-2 (MAP-2) by immunofluorescence assay.

Objective

To investigate the beneficial effect of brain-derived neurotrophic factor (BDNF) -overexpressing human umbilical cord mesenchymal stem cell (hUC-MSC)-derived motor neurons in the human Cu, Zn-superoxide dismutase1 (hSOD1)G93A amyotrophic lateral sclerosis (ALS) mice.

Results

After transplantation, mice in the ALS/MN-BDNF and ALS/MN groups both exhibited longer latency to fall and longer survival than those in the ALS group (P < 0.01 vs. P < 0.05), and the improvement was more significant in the former than in the latter. However, cell transplantation did not delay disease onset. In the lumbar enlargements of the ALS/MN-BDNF and ALS/MN groups, the expression of hSOD1 was slightly reduced without statistical significance (P > 0.05), but the expression of BDNF, ChAT and HB9, and the co-expression of MHCI and MAP-2 were significantly greater than in the ALS group (P < 0.01), with the differences also being more prominent in the former group than in the latter. Conclusions: Transplantation of BDNF-overexpressing hUC-MSC-derived motor neurons can improve motor performance and prolong the survival of hSOD1G93A mice. Combining stem cell-derived motor neurons with BDNF might provide a new therapeutic strategy for ALS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。