Vitamin C facilitates direct cardiac reprogramming by inhibiting reactive oxygen species

维生素 C 通过抑制活性氧物质促进直接心脏重编程

阅读:4
作者:Juntao Fang, Qiangbing Yang #, Renée G C Maas #, Michele Buono, Bram Meijlink, Dyonne Lotgerink Bruinenberg, Ernest Diez Benavente, Michal Mokry, Alain van Mil, Li Qian, Marie-José Goumans, Raymond Schiffelers, Zhiyong Lei, Joost P G Sluijter

Background

After myocardial infarction, the lost myocardium is replaced by fibrotic tissue, eventually progressively leading to myocardial dysfunction. Direct reprogramming of fibroblasts into cardiomyocytes via the forced overexpression of cardiac transcription factors Gata4, Mef2c, and Tbx5 (GMT) offers a promising strategy for cardiac repair. The limited reprogramming efficiency of this approach, however, remains a significant challenge.

Conclusions

Our findings demonstrate that VitC supplementation significantly enhances the efficiency of cardiac reprogramming, partially by suppressing ROS production in the presence of GMT.

Methods

We screened seven factors capable of improving direct cardiac reprogramming of both mice and human fibroblasts by evaluating small molecules known to be involved in cardiomyocyte differentiation or promoting human-induced pluripotent stem cell reprogramming.

Results

We found that vitamin C (VitC) significantly increased cardiac reprogramming efficiency when added to GMT-overexpressing fibroblasts from human and mice in 2D and 3D model. We observed a significant increase in reactive oxygen species (ROS) generation in human and mice fibroblasts upon Doxy induction, and ROS generation was subsequently reduced upon VitC treatment, associated with increased reprogramming efficiency. However, upon treatment with dehydroascorbic acid, a structural analog of VitC but lacking antioxidant properties, no difference in reprogramming efficiency was observed, suggesting that the effect of VitC in enhancing cardiac reprogramming is partly dependent of its antioxidant properties. Conclusions: Our findings demonstrate that VitC supplementation significantly enhances the efficiency of cardiac reprogramming, partially by suppressing ROS production in the presence of GMT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。